Big Data: как применять и анализировать большие данные?
Big Data - это большие массивы информации, которые часто бывают неупорядоченными. Технологии работы с такими данными известны как Big Data технологии. Это направление в IT является одним из самых популярных в настоящее время. И это не удивительно. Приложение технологий Big Data открывает новые возможности для развития бизнеса, а также предоставляет клиентам персонифицированные продукты и сервисы.
В данной статье мы рассмотрим технологии анализа больших данных и объясним, как их использование может пригодиться в бизнесе.
Влияние больших данных на науку и бизнес
3 сентября 2008 года в журнале Nature был выпущен специальный номер, посвященный влиянию огромных массивов информации на развитие науки. Так появился термин Big Data. С того момента прошло несколько лет, и стало ясно, что аналитика больших данных актуальна для любой отрасли.
Объемы данных возрастают экспоненциально, при этом традиционные методы и инструменты становятся неэффективными. Рост количества информации произошел благодаря развитию информационных технологий и расширению возможностей вычислительной техники. Помимо интернета (социальные сети, сайты, интернет-магазины, форумы, СМИ), данные поступают с мобильных устройств, измерительных приборов, метеостанций, аудио- и видеорегистраторов, корпоративных систем, их источники постоянно растут. Каждый день объем данных продолжает увеличиваться.
Для хранения, обработки и анализа такого огромного объема информации требуются специальные алгоритмы и программные средства. Они также входят в понятие Big Data. Данная технология нашла применение во многих сферах, включая медицину, банковское дело, страхование, маркетинг, рекламу и другие. Так, большие данные используются для создания персонализированных рекомендаций, предотвращения кибератак и мошенничества, определения тенденций в медицине и других отраслях.
Анализ методов хранения данных
В современном мире большие объемы данных являются незаменимыми ресурсами, однако их использование может оказаться неэффективным, если они не будут обработаны и соответственно использованы. Для обработки больших данных используются методы, которые состоят из нескольких этапов. Первым шагом является сбор информации из различных источников, включая серверы, базы данных и другие устройства. Далее следует обеспечить их хранение, обработку и защиту от потери.
В настоящее время для хранения данных используются как собственные вычислительные ресурсы, так и облачные решения. Тем не менее, использование собственных ресурсов может привести к проблеме масштабирования, а также к дополнительным расходам на поддержание и обновление оборудования. При этом, в периоды пиковых нагрузок, физический сервер может выйти из строя, при этом перестраховка приводит к неоправданным расходам.
Использование облачных решений для хранения данных позволяет избежать данных проблем и обеспечивает быстрое масштабирование и резервирование вычислительных ресурсов. В облачных решениях есть возможность быстро увеличить объем информации, а также обеспечить надежность, отказоустойчивость и гибкую настройку. Таким образом, каждый индивидуальный подход должен быть оценен в соответствии со спецификой бизнес-задач, требующих обработки данных.
Ключевой этап работы с большими данными - анализ. Это именно тот этап, благодаря которому Big Data начинает приносить реальную пользу в бизнесе. Он позволяет отфильтровать не нужную информацию и выделить все самое ценное.
Существует множество методов анализа больших данных, описать их все в рамках одной статьи невозможно, поэтому мы рассмотрим основные из них.
Для анализа больших объемов данных необходима предварительная обработка данных. Этот метод заключается в приведении разнородных данных к общему виду, дополнении недостающей информации и отсеивании лишних. Такой этап работы с данными называется подготовительным и предшествует самому анализу.
Одним из методов обработки информации является Data Mining, что в переводе означает «добычу данных». Название точно отражает суть метода, который заключается в извлечении полезных закономерностей из большого количества разнородных данных. При использовании Data Mining решаются различные задачи, такие как классификация, кластеризация, анализ отклонений и многие другие. В рамках классификации метод позволяет группировать данные по определенным признакам. Анализ отклонений позволяет выявить аномальные события в потоке информации. Data Mining - мощный инструмент, который помогает оптимизировать работу с данными и выявить скрытые закономерности в таких областях, как маркетинг, планирование, производство и др.
Алгоритмы машинного обучения похожи на работу человеческого мозга, ведь они производят анализ входных данных и дают необходимые результаты. Нейронные сети особенно умелы в этом, проделывая сложную работу. Они могут обнаруживать лица на фотографиях или определять недобросовестные транзакции по различным признакам.
В современном мире прогностический анализ используется для предсказания различных событий: от поведения клиентов и увеличения продаж до изменения финансовых показателей компании, курсов валют, доставки товаров и поломок оборудования. Одним из ключевых моментов в прогнозировании будущих событий является использование ретроспективных данных и выделение параметров, которые могут значительно влиять на результат. Таким образом, прогностический анализ становится незаменимым инструментом для различных индустрий, что позволяет им оперативно адаптироваться к изменяющимся условиям и принимать управленческие решения на основе научных данных.
Статистический анализ
Большие объемы данных (Big Data) помогают улучшить точность статистического анализа: чем более представительной будет выборка, тем более точными будут результаты исследований.
Визуализация является ключевым этапом в анализе данных, так как она позволяет представить информацию в удобном и понятном формате для пользователя. Этот процесс может включать в себя создание графиков, карт, схем, диаграмм и гистограмм.
Для достижения успешного результата визуализации используются специальные инструменты Big Data, которые позволяют обрабатывать и анализировать большие объемы данных.
Количество информации, сгенерированной пользователями, увеличивается с каждым годом. Примерно за 2020 год они сгенерировали почти 60 зеттабайт (около 60 × 10 21 байт) данных, а к 2025 году прогнозируется утроение этих цифр. Поэтому анализ Big Data является перспективным технологическим направлением, на которое вкладываются большие деньги крупных компаний. Большие данные актуальны и для бизнеса, и для науки, и для сферы государственного управления.
Какие свойства данных можно отнести к понятию Big Data?
Big Data - это громадный объем данных, который является характерным атрибутом технологической эры, что мы наблюдаем сегодня. Однако, объем данных - это не единственная характеристика, которой следует обладать, чтобы быть отнесенным к категории Big Data.
Для того, чтобы данные были считались Big Data, необходимо, чтобы они соответствовали трём главным характеристикам, называемым «трем V»: объёму, скорости и разнообразию. Количество данных должно быть огромным и измеряться не терабайтами, а петабайтами и эксабайтами. Данные также должны поступать из разных источников непрерывно и быстро. Информация, относящаяся к Big Data, может быть представлена разнообразными типами данных, такими как текстовые и графические документы, аудио и видеофайлы, а также логи. Некоторые эксперты добавляют два дополнительных критерия, которыми являются достоверность и ценность.
Также для того, чтобы данные имели значение и могли быть использованы бизнесом, они должны быть точными, практически полезными и иметь жизненную способность. В целом, характеристики Big Data существенно отличаются от привычных нам данных, традиционно обрабатываемых в информационных системах.
Зачем использовать Big Data?
Одним из главных преимуществ использования анализа больших данных является возможность оптимизации бизнес-процессов, улучшения логистики, повышения производительности и качества товаров и услуг. Также большие данные позволяют минимизировать риски, совершенствовать предсказание тенденций рынка, понимать поведение клиентов и их потребности, чтобы правильно нацеливаться на целевую аудиторию. Благодаря анализу большого объема данных, производство становится экологичнее и энергоэффективнее. Не только продавцы получают выгоду от использования Big Data, но и покупатели - удобства в использовании сервисов.
Первыми преимущества использования Big Data оценили телекоммуникационные компании, банки и компании ретейла. Сейчас анализ больших данных широко используется не только в торговле, рекламе и индустрии развлечений, но и в сфере безопасности, медицине, сельском хозяйстве, промышленности, энергетике, науке, государственном управлении.
Ниже представлены несколько примеров использования Big Data в разных отраслях деятельности.
Революция в фармакологии: как Big Data помогает создавать лекарства
С использованием Big Data технологические компании могут создавать интеллектуальные продукты и сервисы, способные решать принципиально новые задачи. В США, например, была разработана платформа "вычислительной биологии", которая может помочь находить и создавать лекарственные препараты, способные точно попадать в цель и быть эффективными в лечении конкретных заболеваний.
Анализ больших данных уже используется для ускорения и повышения точности медицинских исследований. На конференции программистов DUMP были обнародованы данные о том, что использование Big Data в ходе цикличного медицинского тестирования выявило погрешность в 20% по сравнению с неавтоматизированными измерениями.
Анализ больших данных применяется и в Европе, где он внедряется в сферу медицины более активно. Исследования, проведенные в этой области, показали, что с помощью анализа информации на 150 000 пациентов можно выявлять связь определенных генетических факторов с заболеваемостью раком, что помогает более эффективно диагностировать и лечить заболевания.
Таким образом, внедрение инноваций в сферу медицины с помощью анализа больших данных позволяет создавать более эффективные лекарства и повышать точность медицинских исследований, что может привести к существенному улучшению качества жизни людей.
Маркетологи активно применяют большие данные в своей работе. Они анализируют информацию о покупках, поисковых запросах, посещениях и лайках в социальных сетях, чтобы определить предпочтения пользователей и предложить им наиболее интересные товары. С помощью Big Data реклама становится более целевой и эффективной.
Первопроходцем в области рекомендательных сервисов на основе анализа пользовательских данных является маркетплейс Amazon. В его системе используется не только информация об истории покупок и поведении клиентов, но и о внешних факторах, таких как время года или предстоящие праздники. Благодаря такому подходу система рекомендаций приносит более трети всех продаж.
Статья рассказывает о том, как банки используют большие данные для обеспечения безопасности транзакций и предотвращения мошенничества. Специалисты используют Big Data и машинное обучение, чтобы разработать модели поведения добросовестных пользователей. Таким образом, любое отклонение от нормального поведения вызывает сигнал тревоги для службы безопасности.
Один из ярких примеров – это Сбербанк. Система сравнения фотографий клиентов, полученных с помощью веб-камеры, с изображениями из базы, была внедрена еще в 2014 году. Благодаря этой системе точность идентификации была улучшена, а случаи мошенничества уменьшились в десять раз.
Таким образом, инструменты, основанные на Big Data и машинном обучении, позволяют банкам повысить уровень безопасности транзакций и защитить персональные данные клиентов от мошенников.
Внедрение новых технологий и интеллектуальных систем сбора и анализа данных позволяет больше не ограничиваться реактивными мерами по устранению простоев и сокращению производительности, а применять проактивный подход, предотвращая возможные поломки и исключая из процесса неэффективные операции.
Так, аэропорт «Пулково» в 2020 году внедрил интеллектуальную платформу на основе больших данных, которая автоматизировала работу служб компании и сделала управление предприятием более прозрачным и эффективным. Данные теперь можно оперативно получать по любым текущим процессам, что повышает качество работы предприятия. Новая платформа также упрощает сотрудничество аэропорта с авиакомпаниями, оптимизирует планирование ресурсов, в том числе, при выполнении технического обслуживания и ремонта терминалов.
Ожидается, что применение этой платформы под названием «умный сервис» улучшит техническое состояние оборудования и общую оборачиваемость запасов на 10%, а уровень сервиса поставщиков на 20%. Теперь производственные процессы в «Пулково» стали еще более эффективными и оптимальными. Инновационные технологии и интеллектуальные системы мониторинга позволяют оптимизировать производственные процессы и решать задачи с высокой точностью.
Прогнозирование на основе больших данных
При использовании больших данных возможно строить прогнозные модели, выявлять закономерности и предугадывать поведение людей и процессов в будущем. Примером могут служить прогнозы спроса на товары и услуги, успешность рекламных кампаний и эффективность взаимодействия с клиентами. Также прогнозные модели могут применяться в различных отраслях, включая образование для предположений о будущей успеваемости учащихся и эффективности программ.
Прогнозная аналитика на основе больших данных широко используется в авиации. Компания Airbus, например, планирует минимизировать количество случаев, когда самолет не выполняет полет из-за выявленной неисправности, благодаря предиктивному обслуживанию к 2025 году. Компания Lufthansa Technik уже внедряет платформу, которая предсказывает сроки замены деталей самолета.
Небольшая статистика
Консалтинговая компания Accenture провела исследование в 2014 году, опросив руководителей 1000 компаний из разных стран мира. Было обнаружено, что 60% из них уже внедрили системы анализа больших данных и были довольны результатами. Участники опроса отметили создание новых продуктов и услуг, увеличение количества способов заработка, улучшение клиентского опыта, а также повышение лояльности клиентов среди основных преимуществ Big Data. Источник: https://www.tadviser.ru/.
Фото: freepik.com